CADEIAS DE MARKOV

1. INTRODUÇÃO

$$A = \begin{bmatrix} 0.3 & 0.7 \\ 0.25 & 0.75 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 0.3 & 0.7 \\ 0.25 & 0.75 \end{bmatrix} \begin{bmatrix} 0.3 & 0.7 \\ 0.25 & 0.75 \end{bmatrix} = \begin{bmatrix} 0.265 & 0.735 \\ 0.2625 & 0.7375 \end{bmatrix}$$

$$X(t) \text{ X DEPENDE DE } t,$$

EXEMPLOS:
1. $$X(t)$$ NÚMERO DE Clientes numa loja no instante $$t$$;
2. $$X(t)$$ Cotação de uma ação no final do dia $$t$$.

DEFINIÇÃO:

$$P_{ij} = P\{x(t+1)=j | x(t)=i\} = \begin{cases} P_{ij} = K_{t-1}, & \text{if } x(t) = K_1, x(0) = K_0 \\ P_{ij} = 0,1,2,..., K_{t-1} \end{cases}$$

$$P_{ij} = 0, 1, 2, ..., K_{t-1} \text{ e } K_0, K_1, ..., K_{t-1}$$

4. PARA CADA PESSOA QUE COMpra UM CARRO NA LOJA $$X$$ HA 90% DE PROBABILIDADE DE O PRóXIMO CARRO SEJA BRANCO.
CADA PESSOA QUE COMpra UM CARRO PRETO HA 80% DE CHANCE DE O PRóXIMO COMPRADO SEJA VERDE

$$A = \begin{bmatrix} 0.90 & 0.10 \\ 0.10 & 0.20 \end{bmatrix}$$
Probabilidade de Transição

\[P_{ij}^{(n)} = \sum_{k=1}^{n-1} P_{ik}^j P_{kj}\]

- Linhas: \(k\) - Linhas: \(n\) - Colunas
- Colunas:

Podemos dizer que se \(P\) pode ser uma matriz estocástica então qualquer potência de \(P\) e dois

\[P^n = [P_{ij}^{(n)}]\] sendo \(P_{ij}^{(n)} > 0\) e \(\sum_j P_{ij}^{(n)} = 1\)

\[A^3 = A^2 A\]

\[
\begin{bmatrix}
0,265\cdot0,3 + 0,735\cdot0,25 & 0,265\cdot0,7 + 0,735\cdot0,75 \\
0,2625\cdot0,3 + 0,7375\cdot0,25 & 0,2625\cdot0,7 + 0,7375\cdot0,75
\end{bmatrix}
\]

\[= \begin{bmatrix}
0,26325 & 0,43675 \\
0,26325 & 0,436875
\end{bmatrix}\]

\(\pi_j\) Limite dos termos da multiplicação

\[A^2 = \begin{bmatrix}
0,265 & 0,735 \\
0,2625 & 0,7375
\end{bmatrix} ;
A = \begin{bmatrix}
0,3 & 0,7 \\
0,25 & 0,75
\end{bmatrix}\]

Exercício 3:

\[A = \begin{bmatrix}
0,9 & 0,1 \\
0,8 & 0,2
\end{bmatrix} ;
A^2 = A \cdot A = \begin{bmatrix}
0,9 & 0,1 \\
0,8 & 0,2
\end{bmatrix} \begin{bmatrix}
0,9 & 0,1 \\
0,8 & 0,2
\end{bmatrix} = \begin{bmatrix}
0,9 \cdot 0,9 + 0,1 \cdot 0,1 \\
0,9 \cdot 0,8 + 0,1 \cdot 0,2
\end{bmatrix} = \begin{bmatrix}
0,81 & 0,09 \\
0,72 & 0,08
\end{bmatrix}\]
A = \begin{bmatrix} 0.9 & 0.1 \\ 0.8 & 0.2 \end{bmatrix}

\{
\begin{align*}
\pi_A &= 0.9 \pi_A + 0.2 \pi_B \\
\pi_B &= 0.1 \pi_A + 0.8 \pi_B \\
\pi_A + \pi_B &= 1
\end{align*}
\}

Distribuição de Probabilidades

Exercício: \(A = \begin{bmatrix} 0.30 & 0.70 \\ 0.25 & 0.75 \end{bmatrix} \)

\{
\begin{align*}
\pi_A &= 0.30 \pi_A + 0.75 \pi_B \\
\pi_B &= 0.70 \pi_A + 0.25 \pi_B \\
\pi_A + \pi_B &= 1
\end{align*}
\}

\{
\begin{align*}
0.70 \pi_A &= 0.75 \pi_B \\
0.25 \pi_B &= 0.70 \pi_A \\
\pi_A + \pi_B &= 1
\end{align*}
\}

\{
\begin{align*}
0.1 \pi_A &= 0.2 \pi_B \\
0.2 \pi_B &= 0.1 \pi_A \\
\pi_A + \pi_B &= 1
\end{align*}
\}

\begin{align*}
\pi_A &= 0.15 \\
\pi_B &= 0.14
\end{align*}

\(\pi_A = \frac{15}{14}, \pi_B = \frac{14}{29} \) → \(\pi_A = 0.5172 \)

\(\frac{15}{14} \pi_B + \pi_B = 1 \)

\begin{align*}
29 \pi_B &= 14 \\
\pi_B &= \frac{14}{29} = 0.4827 \quad \Rightarrow \quad \pi_B &= 0.4827
\end{align*}

\(\pi_A = 0.666 \)